Redox Reactions

- Find the sum of oxidation number of nitrogen in (NH₄)₂SO₄.
 N₂H₄ and N₂O₄.
- 2. Among NH₃, HNO₃, NaN₃ and Mg₃N₂. Find the number of molecules having nitrogen in negative oxidation state.
- 3. When K₂Cr₂O₇ is converted into K₂CrO₄. What will be the change in oxidation number of chromium?
- **4.** Find the ratio of oxidation numbers of P in PO_4^{3-} and Cr in $Cr_2O_7^{2-}$.
- 5. In a balance equation $H_2SO_4 + xHI \rightarrow H_2S + yI_2 + zH_2O$, find the ratio of x + y : y + z
- 6. One mole of N₂H₄ loses 10 moles of electrons to form a new compound, y. Assuming that all nitrogen appear in the new compound, what is the oxidation state of nitrogen in y (there is no change in the oxidation state of hydrogen)?
- 7. Balance the redox reaction and find the sum of coefficient of MnO_4^- and Mn^{2+} .

$$MnO_4^- + C_2O_4^{2-} + H^+ \rightarrow Mn^{2+} + CO_2 + H_2O$$

- **8.** The equivalent weight of a metal is 36. What weight of the metal would give 9.322 gm. of its chloride?
- Find the ratio of equivalent weight of MnO₄⁻ in acidic and basic media.
- Find the number of moles of K₂Cr₂O₇ reduced by three mole of Sn²⁺ ions.
- Find the equivalent weight of barium in BaCrO₄ which is used as an oxidising agent in acidic medium.
 (At wt. of Ba = 137.34)
- 12. 50 mL of 0.1 M solution of a salt reacted with 25 mL of 0.1 M solution of sodium sulphite. The half reaction for the oxidation of sulphite ion is:

$$SO_3^{2-}(aq) + H_2O(1) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$$

If the oxidation number of metal in the salt was 3, what would be the new oxidation number of metal?

- 13. $N_2+3H_2 \longrightarrow 2NH_3$, molecular weight and equivalent weight of NH_3 and N_2 are 17.03 g, 14 g and Y_1, Y_2 respectively. Find the value of (Y_1-Y_2) .
- 14. An element A in a compound ABD has oxidation number A²⁻. It is oxidised by Cr₂O₇²⁻ in acidic medium. In the experiment 1.68 × 10⁻³ moles of K₂Cr₂O₇ were used for 3.26×10⁻³ moles of ABD. What would be new oxidation number of A after oxidation.
- 15. Find the oxidation state of Fe in (Fe₄[Fe(CN)₆]₃.

SOLUTIONS

- 1. (-1) Let O.N. of N be xIn $(NH_4)_2SO_4$; x = -3In N_2H_4 ; x = -2In N_2O_4 ; x = -4Sum of oxidation numbers of N
 - Sum of oxidation numbers of N = -3 + (-2) + 4= -1
- 2. (3) Calculating the oxidation state of nitrogen in given molecules; Oxidation state of N in NH₃ is $x+3\times(+1)=0$ or x=-3Oxidation state on N in NaNO₃ is $1+x+3\times(-2)=0$ or x=+5

Oxidation state of N in NaN3 is

$$+1+3x=0 \text{ or } x=-\frac{1}{3}$$

Oxidation state of N in Mg_3N_2 is $3 \times 2 + 2x = 0$ or x = -3

Thus 3 molecules (i.e. NH₃, NaN₃ and Mg₃N₂, have nitrogen in negative oxidation state.

- 3. (0) O.N. of Cr in $K_2Cr_2O_7: 2+2x-14=0$ 2x=12, x=6O.N. of Cr in $K_2CrO_4: 2+x-8=0$
 - \therefore Change in O.N. of Cr = 6 6 = 0
- 4. (1) $PO_4^{3-} = x + 4(-2) = -3; x 8 = -3; x = +5$ $Cr_2O_7^{2-} = 2x + 7(-2) = -2; 2x 14 = -2;$ 2x = 12; x = +6 $Ratio = \frac{+6}{+6} = 1$
- 5. (1.5) The value of x, y, z are 8, 4, 4 respectively hence the reaction is $H_2SO_4 + 8HI \rightarrow H_2S + 4I_2 + 4H_2O$ $\therefore y + y = 12 \text{ and } y + z = 8$
 - $\therefore x + y = 12 \text{ and } y + z = 8.$ Here ratio x + y : y + z = 3 : 2
- 6. (+3) $N_2H_4 \xrightarrow{loss of 10e^-} Y$
- Oxidation number of nitrogen in $N_2O_4 = -2$ According to given information in the question $N_2H_4 \longrightarrow N_2$ $\therefore Y = N_2$ Oxidation number of nitrogen in compound
 - Oxidation number of nitrogen in compound Y = +3
- 7. (4) The balanced equation is $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$ Sum of coefficient of MnO_4^- and Mn^{2+} is 4.
- 8. (9.322) The equivalent wt. of metal = 36
 The equivalent wt. of chlorine = 35.5
 Equivalent wt. of metal chloride = 71.5
 71.5 gm. metal chloride contain 36 gm of metal
 9.322 gm metal chloride contain

- $\frac{36}{71.5} \times 9.322 \text{ gm of metal}$ = 4.6935 gm of metal
- : 4.6935 gm metal give 9.322 gm metal chloride.
- 9. (0.6) $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ (Acidic medium)

$$MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH$$

(Besic medium)

If M is mol. wt. of $KMnO_4$, then its Eq. wt. in acidic, basic are

$$\frac{M}{5}$$
: $\frac{M}{3}$ or 3: 5 = 0.6

10. (1) $Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$ $3Sn^{2+} - 6e^- \longrightarrow 3Sn^{4+}$

Hence
$$\operatorname{Cr}_2\operatorname{O}_7^{2-} + 14\operatorname{H}^+ + 3\operatorname{Sn}^{2+} \longrightarrow$$

$$2Cr^{3+} + 7H_2O + 3Sn^{4+}$$

∴ 3 moles of Sn²⁺ reduces 1 mole of K₂Cr₂O₇.

11. (45.7) In acidic medium $BaCrO_4$ is converted into $BaCr_2O_7$

$$2 CrO_4^{2-} + 2H^+ \longrightarrow Cr_2O_7^{2-} + H_2O$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^3 + 7H_2O$$

$$2\text{BaCrO}_4 \equiv 6e^-\text{ or BaCrO}_4 \equiv 3e^-$$

$$\therefore$$
 Eq. wt. of Ba²⁺ = $\frac{1}{3} \times$ At. wt

$$= \frac{1}{3} \times 137.34 = 45.78$$

12. (+2) Meq. of sodium sulphite = Meq. of salt $25 \times 0.1 \times 2 = 50 \times 0.1 \times n$

$$\therefore$$
 n = 1

(Where n represents valence factor for metal involving no. of electrons gained)

Thus,
$$M^{3+} + e^- \longrightarrow M^{2+}$$
.

13. (3.34) $6e^- + N_2 \longrightarrow 2N^{3-}$

$$E_{N_2} = \frac{14}{6} = Y_2$$

$$\therefore E_{NH_3} = \frac{17.03}{3} = Y_1$$

$$\therefore Y_1 - Y_2 = \frac{17.03}{3} - \frac{X_2}{6} = 5.67 - 2.33 = 3.34$$

14. (1) $A^{2-} \longrightarrow A^{a+} + (a+2) e^{-}$

$$6e^- + (Cr^{6+})_2 \longrightarrow 2Cr^{3+}$$

Also Meq. of A = Meq. of
$$K_2Cr_2O_7$$

3.26 × 10⁻³ (a + 2) = 1.68 × 10⁻³ × 6

$$3.26 \times 10^{-3} (a+2) = 1.68 \times 10^{-3}$$

 $\therefore a+2=3, \Rightarrow a=3-2=1$

15.
$$(+2)$$
 $4 \times (+3) + [3x + 18(-1)] = 0 \Rightarrow x = +2$

